As a powerful representation of 3D scenes, the neural radiance field (NeRF) enables high-quality novel view synthesis from multi-view images. Stylizing NeRF, however, remains challenging, especially on simulating a text-guided style with both the appearance and the geometry altered simultaneously. In this paper, we present NeRF-Art, a text-guided NeRF stylization approach that manipulates the style of a pre-trained NeRF model with a simple text prompt. Unlike previous approaches that either lack sufficient geometry deformations and texture details or require meshes to guide the stylization, our method can shift a 3D scene to the target style characterized by desired geometry and appearance variations without any mesh guidance. This is achieved by introducing a novel global-local contrastive learning strategy, combined with the directional constraint to simultaneously control both the trajectory and the strength of the target style. Moreover, we adopt a weight regularization method to effectively suppress cloudy artifacts and geometry noises which arise easily when the density field is transformed during geometry stylization. Through extensive experiments on various styles, we demonstrate that our method is effective and robust regarding both single-view stylization quality and cross-view consistency. The code and more results can be found in our project page: https://cassiepython.github.io/nerfart/.
translated by 谷歌翻译
Directly training a document-to-document (Doc2Doc) neural machine translation (NMT) via Transformer from scratch, especially on small datasets usually fails to converge. Our dedicated probing tasks show that 1) both the absolute position and relative position information gets gradually weakened or even vanished once it reaches the upper encoder layers, and 2) the vanishing of absolute position information in encoder output causes the training failure of Doc2Doc NMT. To alleviate this problem, we propose a position-aware Transformer (P-Transformer) to enhance both the absolute and relative position information in both self-attention and cross-attention. Specifically, we integrate absolute positional information, i.e., position embeddings, into the query-key pairs both in self-attention and cross-attention through a simple yet effective addition operation. Moreover, we also integrate relative position encoding in self-attention. The proposed P-Transformer utilizes sinusoidal position encoding and does not require any task-specified position embedding, segment embedding, or attention mechanism. Through the above methods, we build a Doc2Doc NMT model with P-Transformer, which ingests the source document and completely generates the target document in a sequence-to-sequence (seq2seq) way. In addition, P-Transformer can be applied to seq2seq-based document-to-sentence (Doc2Sent) and sentence-to-sentence (Sent2Sent) translation. Extensive experimental results of Doc2Doc NMT show that P-Transformer significantly outperforms strong baselines on widely-used 9 document-level datasets in 7 language pairs, covering small-, middle-, and large-scales, and achieves a new state-of-the-art. Experimentation on discourse phenomena shows that our Doc2Doc NMT models improve the translation quality in both BLEU and discourse coherence. We make our code available on Github.
translated by 谷歌翻译
The spread of rumors along with breaking events seriously hinders the truth in the era of social media. Previous studies reveal that due to the lack of annotated resources, rumors presented in minority languages are hard to be detected. Furthermore, the unforeseen breaking events not involved in yesterday's news exacerbate the scarcity of data resources. In this work, we propose a novel zero-shot framework based on prompt learning to detect rumors falling in different domains or presented in different languages. More specifically, we firstly represent rumor circulated on social media as diverse propagation threads, then design a hierarchical prompt encoding mechanism to learn language-agnostic contextual representations for both prompts and rumor data. To further enhance domain adaptation, we model the domain-invariant structural features from the propagation threads, to incorporate structural position representations of influential community response. In addition, a new virtual response augmentation method is used to improve model training. Extensive experiments conducted on three real-world datasets demonstrate that our proposed model achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.
translated by 谷歌翻译
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
translated by 谷歌翻译
With the success of the prompt-tuning paradigm in Natural Language Processing (NLP), various prompt templates have been proposed to further stimulate specific knowledge for serving downstream tasks, e.g., machine translation, text generation, relation extraction, and so on. Existing prompt templates are mainly shared among all training samples with the information of task description. However, training samples are quite diverse. The sharing task description is unable to stimulate the unique task-related information in each training sample, especially for tasks with the finite-label space. To exploit the unique task-related information, we imitate the human decision process which aims to find the contrastive attributes between the objective factual and their potential counterfactuals. Thus, we propose the \textbf{C}ounterfactual \textbf{C}ontrastive \textbf{Prompt}-Tuning (CCPrompt) approach for many-class classification, e.g., relation classification, topic classification, and entity typing. Compared with simple classification tasks, these tasks have more complex finite-label spaces and are more rigorous for prompts. First of all, we prune the finite label space to construct fact-counterfactual pairs. Then, we exploit the contrastive attributes by projecting training instances onto every fact-counterfactual pair. We further set up global prototypes corresponding with all contrastive attributes for selecting valid contrastive attributes as additional tokens in the prompt template. Finally, a simple Siamese representation learning is employed to enhance the robustness of the model. We conduct experiments on relation classification, topic classification, and entity typing tasks in both fully supervised setting and few-shot setting. The results indicate that our model outperforms former baselines.
translated by 谷歌翻译
Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
Solar activity is usually caused by the evolution of solar magnetic fields. Magnetic field parameters derived from photospheric vector magnetograms of solar active regions have been used to analyze and forecast eruptive events such as solar flares and coronal mass ejections. Unfortunately, the most recent solar cycle 24 was relatively weak with few large flares, though it is the only solar cycle in which consistent time-sequence vector magnetograms have been available through the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) since its launch in 2010. In this paper, we look into another major instrument, namely the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) from 1996 to 2010. The data archive of SOHO/MDI covers more active solar cycle 23 with many large flares. However, SOHO/MDI data only has line-of-sight (LOS) magnetograms. We propose a new deep learning method, named MagNet, to learn from combined LOS magnetograms, Bx and By taken by SDO/HMI along with H-alpha observations collected by the Big Bear Solar Observatory (BBSO), and to generate vector components Bx' and By', which would form vector magnetograms with observed LOS data. In this way, we can expand the availability of vector magnetograms to the period from 1996 to present. Experimental results demonstrate the good performance of the proposed method. To our knowledge, this is the first time that deep learning has been used to generate photospheric vector magnetograms of solar active regions for SOHO/MDI using SDO/HMI and H-alpha data.
translated by 谷歌翻译
标记医学图像取决于专业知识,因此很难在短时间内以高质量获取大量注释的医学图像。因此,在小型数据集中充分利用有限标记的样品来构建高性能模型是医疗图像分类问题的关键。在本文中,我们提出了一个深入监督的层选择性注意网络(LSANET),该网络全面使用功能级和预测级监督中的标签信息。对于特征级别的监督,为了更好地融合低级功能和高级功能,我们提出了一个新颖的视觉注意模块,层选择性注意(LSA),以专注于不同层的特征选择。 LSA引入了一种权重分配方案,该方案可以在整个训练过程中动态调整每个辅助分支的加权因子,以进一步增强深入监督的学习并确保其概括。对于预测级的监督,我们采用知识协同策略,通过成对知识匹配来促进所有监督分支之间的层次信息互动。使用公共数据集MedMnist,这是用于涵盖多种医学专业的生物医学图像分类的大规模基准,我们评估了LSANET在多个主流CNN体系结构和各种视觉注意模块上评估。实验结果表明,我们所提出的方法对其相应的对应物进行了实质性改进,这表明LSANET可以为医学图像分类领域的标签有效学习提供有希望的解决方案。
translated by 谷歌翻译
联合学习(FL)是一种机器学习范式,允许分散的客户在不共享其私人数据的情况下进行协作学习。但是,过度的计算和沟通要求对当前的FL框架构成挑战,尤其是在训练大型模型时。为了防止这些问题阻碍FL系统的部署,我们提出了一个轻巧的框架,客户共同学习融合由多个固定预训练的模型生成的表示形式,而不是从SCRATCH培训大型模型。这通过考虑如何从预先训练的模型中捕获更多特定于客户的信息,并共同提高每个客户利用这些现成模型的能力,从而导致我们解决了一个更实用的FL问题。在这项工作中,我们设计了一种联合原型对比度学习(FEDPCL)方法,该方法通过其类原型共享客户的知识,并以原型对比度方式构建特定于客户的表示。共享原型而不是可学习的模型参数可以使每个客户以个性化的方式融合表示表示,同时以紧凑的形式保持共享知识以进行有效的通信。我们在轻量级框架中对拟议的FEDPCL进行了彻底的评估,以测量和可视化其在流行的FL数据集上融合各种预训练模型的能力。
translated by 谷歌翻译
现有的二进制神经网络(BNN)主要在具有二进制功能的局部卷积上运作。但是,这种简单的位操作缺乏建模上下文依赖性的能力,这对于学习视觉模型中的歧视性深度表示至关重要。在这项工作中,我们通过介绍二进制神经模块的新设计来解决这个问题,这使BNN能够学习有效的上下文依赖性。首先,我们建议二进制多层感知器(MLP)块作为二进制卷积块的替代方案,以直接建模上下文依赖性。短距离和远程特征依赖性均由二进制MLP建模,其中前者提供局部电感偏置,后者在二元卷积中有限的接受场有限。其次,为了提高具有上下文依赖性的二进制模型的鲁棒性,我们计算上下文动态嵌入,以确定一般二进制卷积块中的二进化阈值。用我们的二进制MLP块和改进的二进制卷积,我们用明确的上下文依赖性建模构建了BNN,称为BCDNET。在标准Imagenet-1K分类基准上,BCDNET可实现72.3%的TOP-1准确性,并且优于领先的二进制方法的差距很大。尤其是,提出的BCDNET超过了最新的ReactNet-A,具有相似操作的2.9%TOP-1准确性。我们的代码可从https://github.com/sense-gvt/bcdn获得
translated by 谷歌翻译